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Chapter 2. The electron theory  
1.0. Introduction 

The possibility of the formal representations of the Schreudinger and the Dirac 
electron equations in the form of the linear Maxwell equations was mentioned in 
several articles and books (Archibald, 1955; Akhiezer and Berestetskii, 1965; Koga, 
1975; Campolattoro, 1980; Rodrigues, 2002).       

According to postulate 6, an electromagnetic wave, which move along the 
closed curvilinear trajectory, must create the stabile objects that correspond to 
elementary particles of different kind.  

Let’s now translate this supposition into the mathematics language and show that 
in the simplest case the matrix form of the equations of such curvilinear waves 
mathematically fully coincides with quantum equations of vector and spinor (semi-
vector) particles and gives many interesting consequences, which supplement  the 
quantum field theory results.  

2.0. Linear EM wave equation in the matrix form 
We define as “linear” wave the solution of the linear wave equation. 
Let us consider the plane-polarized linear electromagnetic (EM) wave moving, 

for example, on - axis (fig.1):  y

 
Fig. 1 

where the electric and magnetic fields can be written in the complex form as:  
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The electromagnetic wave of any direction has two plane polarizations and 
contains only four field vectors; for example, in the case of y-direction we have: 

 { }zxzxy ΗΗΕΕ=Φ ,,,)(
r

,     (2.2) 

and  for all transformations. Note in this connection that the Dirac 

bispinor has also four components. 

0=Η=Ε yy

The EM wave equation has the following known view (Jackson, 1999): 
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where  is any of the above electromagnetic wave field vectors (2.2). In other 
words this equation represents four equations: one for each vectors of the 
electromagnetic field.  

)(yΦ
r

We can also write this equation in the following operator form: 

   ( ) 0)(ˆˆ 222 =Φ− ypc rε ,     (2.4) 
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correspondingly and Φ  is some matrix, which consists four components  of  )(yΦ
r
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0σ̂ ,  are Pauli matrices, the equation (2.4) can also be represented in the 
matrix form of the Klein-Gordon-like equation without mass: 

σ̂r

 ( ) ( ) 0ˆˆˆˆ
222 =Φ⎥⎦
⎤

⎢⎣
⎡ − pco

rrαεα ,    (2.5) 

Taking also into account that in case of photon we have
 h

εω =  and 

h
pk = , from (2.5), using  (2.1), we obtain cp=ε , as it is has place for a 

photon. Therefore we can consider the Φ - wave function of the equation (2.5) both 
as EM wave and as a photon.  

Factorizing (2.5) and multiplying it from left on the Hermitian-conjugate 
function  we get: +Φ

 ( ) ( ) 0ˆˆˆˆˆˆˆˆ =Φ+−Φ+ pcpc oo
rrrr αεααεα ,     (2.6) 

The equation (2.6) may be disintegrated on two Dirac-like equations without 
mass: 

 ( ) 0ˆˆˆˆ =−Φ+ pco
rrαεα ,    (2.7’) 
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  ( ) 0ˆˆˆˆ =Φ+ pco
rrαεα , (2.7’’) 

It is not difficult to show that only in the case when we choose the Φ -matrix in 
the following form:  
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the equations (2.7) are the right Maxwell equations of the electromagnetic waves: 
retarded and advanced. Actually using (2.8) and putting it in (2.7) we obtain: 

   

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=
Ε

+
Η

=
Η

+
Ε

=
Ε

−
Η

=
Η

−
Ε

01

01

01

01

ytc

ytc

ytc

ytc

zx

xz

xz

zx

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

,      (2.9’)      

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=
Ε

−
Η

=
Η

−
Ε

=
Ε

+
Η

=
Η

+
Ε

01

01

01

01

ytc

ytc

ytc

ytc

zx

xz

xz

zx

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

   ,   (2.9’’)  

For waves of any other direction the same results can be obtained by the cyclic 
transposition of the indexes and by the canonical transformation of matrices and 
wave functions  (see chapter 3). 

We will further conditionally name each of (2.7) equations the linear semi-
photon equations, remembering that it was obtained by division of one wave 
equation of a photon into two equations of the electromagnetic waves: retarded and 
advanced. 

3.0. Twirl transformation of electromagnetic wave 
The transformation of the linear wave to the curvilinear (briefly – “twirl 

transformation”) can be conditionally represented as following expression: 

 ,   (3.1) Ψ→ΦR̂

where R̂  is the operator of trajectory transformation of EM wave from linear to 
curvilinear, the Φ  is the wave function, defined by matrix (2.8), which satisfies the 
equations (2.5) and (2.7), and Ψ  is some wave function: 
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 ,     (3.2) 
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which appears after non-linear transformation; here  
{ zxzxy ',',',')( }ΗΗΕΕ=Ψ  are electromagnetic field vectors after twirl 

transformation.  
As it is known, the description of vector transition from linear to curvilinear 

trajectory  is fully described by differential geometry (Eisenhart, 1960). Note also 
that mathematically this transition is equivalent to the vector transition from flat 
space to the curvilinear space, which is described by Riemann geometry. 

In connection to this let us remind that the Pauli matrices as well as the photon 
matrices are the space rotation operators – 2-D and 3-D correspondingly (Ryder, 
1987). 

3.1. The twirl transformation description in differential geometry  
Let the plane-polarized wave, which has the field vectors ),( zx ΗΕ , be twirled 

with some radius  in the plane  of a fixed co-ordinate system 

 so that 
pr )',','( YOX

)',',','( OZYX xΕ  is parallel to the plane  and )',','( YOX zΗ  is 
perpendicular to it (figs 1 and 2). 

 
Fig. 2 

According to Maxwell (Jackson, 1999) the displacement current in the equation 
(2.9) is defined by the expression: 
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The above electrical field vector Ε
r

, which moves along the curvilinear 
trajectory (let it have direction from the center), can be written in the form: 

 ,nr
r

⋅Ε−=Ε     (3.4) 
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where Ε=Ε
r

, and 
rn  is the normal unit-vector of the curve (having direction to the 

center). The derivative of Ε
r

 can be represented as: 
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Here the first term has the same direction as Ε
r

. The existence of the second 
term shows that at the twirling of the wave the additional displacement current 
appears. It is not difficult to show that it has direction, tangential to the ring: 
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−= ,    (3.6) 

where 
r
τ  is the tangential unit-vector, cp ≡υ  is the electromagnetic wave 

velocity, 
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1

=κ  is the curvature of the trajectory and  is the curvature radius. 

Thus, the displacement current of the plane wave, moving along the ring, can be 
written in the form: 
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pj  are the normal and tangent components of 

the current of the twirled electromagnetic wave, correspondingly.  Thus: 

 
r r r
j jdis n= + τj ,     (3.8) 

The currents  and 
r
jn

r
jτ  are always mutually perpendicular, so that we can write 

them in the complex form:  

 τijjj ndis += ,    (3.8’) 
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where Ej p

π
ω

τ 4
= . Thus the tangent current appearance causes the appearance of 

imaginary unit. From the above we can also assume that the appearance of  
imaginary unit in the quantum mechanics is tied with the tangent current 
appearance. 

3.2. The twirl transformation description in Rieman geometry 
We can consider conditionally the Maxwell wave equations (2.7) with wave 

function (2.8) as Dirac equation without mass. 
The generalization of the Dirac equation on the curvilinear (Riemann) geometry 

is connected with the parallel transport of the spinor in the curvilinear space (Fock, 
1929a,b; Fock and Ivanenko, 1929; Van der Waerden, 1929; Schroedinger, 1932; 
Infeld und Van der Waerden, 1933; Goenner, 2004). For the generalization of the 
Dirac (without mass) equation on the Riemann geometry it is enough to replace the 
usual derivative µµ ∂∂ x/≡∂  (where  are the co-ordinates in the 4-space) 

with the covariant derivative: 
µx

 µµµ ∂ Γ+=D ,  (3.9) 

where 3,2,1,0=µ  are the summing indices, and µΓ  is the analogue of 

Christoffel's symbols in the case of the spinor theory, called Ricci symbols (or 
connection coefficients). 

In the theory it shown that 00ˆˆˆ pipii ααα µµ +=Γ , where  and  are 

the real values.  It is not difficult to see that the tangent current  corresponds to the 

Ricci connection coefficients (symbols) 

ip 0p

τj

µΓ . 

When a spinor moves along the straight line, all the symbols 0=Γµ , and we 

have a usual derivative. But if a spinor moves along the curvilinear trajectory, not all 
the  are equal to zero and a supplementary term appears.  µΓ

Typically, the last one is not the derivative, but it is equal to the product of the 
spinor itself with some coefficient µΓ , which is increment in spinor. Since, 

according to the general theory (Sokolov and Ivanenko, 1952), the increment in 
spinor  has the form and the dimension of the energy-momentum 4-vector, it is 

logical to identify 
µΓ

µΓ  with 4-vector of energy-momentum of the photon 

electromagnetic field:  

 { }pp pcr,εµ =Γ ,  (3.10) 
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where pε  and  is the photon energy and momentum (not the operators). In other 

words we have: 
pp

 pp pr
r
αεαα µµ ˆˆˆ 0 +=Γ ,  (3.11) 

Taking into account that according to energy conservation law 
2

0
ˆˆˆ cmp ppp βαεα ±=+

rr
, it is not difficult to see that the supplementary term 

contains a twirled wave mass. 

4.0. The equations of twirled electromagnetic wave 
4.1. Klein-Gordon-like equation of twirling photon 

As it is follows from previous sections due to the curvilinear motion of the 
electromagnetic wave, some additional terms , corresponding to the 

tangent components of the displacement current, will appear in the equation (2.6), so 
that from (2.6) we have: 

2ˆ cmK pβ=

 ( ) ( ) 0ˆˆˆˆˆˆˆˆ =Ψ+⋅+−⋅− KpcKpc oo
rrrr αεααεα ,         (4.1)  

Thus, in the case of the curvilinear motion of the electromagnetic fields of 
photon, instead of the equation (2.6) we obtain the Klein-Gordon-like equation with 
mass (Schiff, 1955):  

 ( ) ,0ˆˆ 42222 =Ψ−− cmpc p
rε         (4.2) 

As we see the -function, which appears after electromagnetic wave twirling 
and satisfies the equation (4.2), is not identical to the 

Ψ
Φ -function before twirling.  

The -function is the classical linear electromagnetic wave field, which satisfies 
the wave equation (2.7); in the same time the Ψ -function is the non-classical 
curvilinear electromagnetic wave field, which satisfies the Klein-Gordon-like 
equation (4.2). 

Φ

As it is known in quantum physics the Klein-Gordon equation is considered as 
the scalar field equation.  But obviously the Klein-Gordon-like equation (4.2), whose 
wave function is - matrix with electromagnetic field components, cannot have 
the sense of the scalar field equation.  Actually, let us analyze the objects, which this 
equation describes. 

14×

From the Maxwell equations follows that each of the components 

zyxzyx ΗΗΗΕΕΕ ,,,,, of vectors of an electromagnetic field ΗΕ
rr

,  submits to 

the same form of the scalar wave equations. In the case of the linear wave all field 
components are independent. Here by study of one of the ΗΕ

rr
,  vector’s 

components, we can consider the vector field as scalar. But after the twirl 
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transformation, i.e. in the framework CWED, when a tangential current appears, we 
cannot proceed to the scalar theory, since the components of a vector E

r
, as it 

follows from the condition (Maxwell law) jc
c

E
rrrr
⋅=⋅∇ 04π

 (where ocr  is the 

unit vector of wave velocity) are not independent functions. 
Therefore, although the Klein - Gordon equation for scalar wave function 

describes a massive particle with spin zero (spinless boson), the equations (4.2) 
concerning electromagnetic wave functions (3.2), which appears after curvilinear 
transformation, represents the equation of the vector particle with rest mass  and 

with spin one. In this sense this equation play the role of the Proca equation. To 
except this difficulty with the name we will name it as the twirled photon equation.  

pm

4.2. The equation of the twirled semi-photon 
Using the disintegration (4.1) we can obtain from twirled photon equation (4.2) 

the equations of the twirled electromagnetic wave – advanced and retarded: 

( )[ 0ˆˆˆˆˆ 2 =++ ψβαεα cmpc po ]rr
, (4.3’) 

( )[ ] 0ˆˆˆˆˆ 2 =−−+ cmpc po βαεαψ rr
,    (4.3’’)       

where { zxzx HHEE ,,,= }ψ  is some EM wave function, which we will be name 
further the twirled semi-photon equations. And the above transition from (4.2) to 
(4.3) we can conditionally name a “symmetry breaking transformation”. 

Now we will analyse the particularities of the equations (4.3). It is not difficult 
to see that the lasts are similar to Dirac electron equations. But note that instead of 
electron mass , equations (4.3) contain the twirled photon mass .  The 

question arises what type of EM particles the equations (4.3) describe? 
em pm

In the case of electron-positron pair production it must be ep mm 2= so that 

from (4.3) we have: 

( )[ ] 0ˆ2ˆˆˆˆ 2 =++ ψβαεα cmpc eo
rr

,    (4.4’) 

( )[ ] 0ˆ2ˆˆˆˆ 2 =−−+ cmpc eo βαεαψ rr
,     (4.4’’)   

Obviously after the twirled photon breaking, i.e. after the chargeless twirled 
photon is divided into two charged semi-photon, the plus and minus charged particles 
acquire the electric fields, and each particle begins to move in the field of another. In 
order to become the independent (i.e. free) particles, they must be drawn away one 
from the other on great distance (fig.3): 
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Fig.3 

Therefore, the equations, which arise after the twirled photon division, cannot be 
the free positive and negative (electron and positron) particle equations, but the 
particle equations with the external field.  

In this case during the charged particles move away one from another the 
energy, which correspond to the energy of the electric field creation, must be 
expended. In fact, being the particles combined, the system doesn’t have any field 
(fig. 3). At very small distance they create the dipole field. And at a distance, much 
more than the particle radius, the plus and minus particles acquire the full electric 
fields. As it is known (Jackson, 1999), the potential  of two plus and minus 
charges in the point P is defined as (fig.4): 

PV

                 
Fig. 4 
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where  are the dipole charges,  is the distance between the charges, and e± d θ  is 
the angle between axes and radius-vector of plus particle. For 0=d  we have 

 For .0=pV ∞→d  we obtain, as the limit case, the Coulomb potential for each 

free particles: 

 
r
eVPd π4

1lim =
∞→

,   (4.6) 

Thus during the breaking process the particle charges appear. For the particle, 
removed to infinity, the work against the attractive forces needed to be fulfilled: 
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,   (4.7) 

Obviously, the external particles field defines this work, so that the release 
energy is the field production energy and in the same time it is the annihilation 
energy. Therefore, due to energy conservation law this energy value for each particle 
must be equal .  2cmerel =ε

So, the equations (4.3) we can write in the following form: 

 ( )[ ] 0ˆˆˆˆˆˆ 22
0

=+++ ψββαεα cmcmpc ee
rr

,    (4.8’)  

 ( )[ ] 0ˆˆˆˆˆˆ 22 =−−−+ cmcmpc eeo ββαεαψ rr
,   (4.8’’)  

Using the linear equation for description of the energy conservation law, we can 
write: 

 exexexexe Aeepccm
rrrr αϕαεβ ˆˆˆ 2 −−=−−=± ,  (4.9)  

where “ex” means “external”. Putting (4.9) in (4.8) we obtain the Dirac equation with 
external field: 

 ( ) ( )[ ] 0ˆˆˆˆˆ 2
0 =+⋅+ ψβαεεα cmppc eexex

r
m

rr
m ,   (4.10) 

which at  give the Dirac free plus and minus particle equations: ∞→d

 ( )[ ] 0ˆˆˆˆˆ 2 =++ ψβαεα cmpc eo
rr

, (4.11’)

 ( )[ ] 0ˆˆˆˆˆ 2 =−−+ cmpc eo βαεαψ rr
,        (4.11’’)  

From above some interesting consequences follow: 
1. before breaking the twirled photon is not an absolutely neutral particle, but a 

dipole; therefore, it must have the dipole moment. 
2. the formula (4.9) shows that in CWED the mass is not equivalent to the 

energy, but to the 4-vector of the energy-momentum; from this follows that in 
CWED the energy has the kinetic origin. 

3. in framework of CWED for free term of particle equation the following 
expression take place: 

 inininine Aeepccm
rrrr αϕαεβ ˆˆˆ 2 −−=−−=± ,  (4.12) 

where “in” means “internal”.  In other words the values ),( inin prε  describe the 

inner field, and the values ),( exex prε  the external field of electron-positron 
particles. When we consider the electron particle from great distance, the field 
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),( inin prε  works as the mass, and the term ),( exex prε  describes the external 
electromagnetic field (and we have linear Dirac equations of particles). Inside the 
electron the term ),( inin prε  is needed for the detailed description of the inner field 
of particle, which characterizes the particle parts interaction (as it is shown below, 
this term carries to non-linear  equation of particle). 

Using (3.2) we obtain electromagnetic form of the equations (4.11): 
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where  
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,   (4.14) 

are the “imaginary” currents, in which 
h

22 cme=ω , and 
cm

r
e

e 2
h

=  is the radius 

of twirling of EM wave (and it is also the half of Compton wavelength of the 
electron). As we see the equations (4.13’) and (4.13’’) are Maxwell equations with 
imaginary electric and magnetic currents. As it is known the existence of the 
magnetic current mj

r
 doesn't contradict to the quantum theory (see the Dirac theory 

of the magnetic monopole (Dirac, 1931)). In our case of the plane polarized wave 
(see figs. 2 and 3) the magnetic currents are equal to zero. 

Thus, the equations (4.11) are Maxwell equations with imaginary tangential 
currents and simultaneously they are the Dirac equation of electron. 
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5.0. Analysis of the free electron equation solution from 
EM point of view 

In accordance with the above results the electromagnetic form of the solution of 
the Dirac free electron equation must be a twirled electromagnetic wave.   

If this supposition is actually correct, for the -direction photon two solutions 
must exist:  

y

1) for the wave, twirled around the -axis OZ
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and  2) for the wave, twirled around the OX -axis 
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The ψ - functions  (5.1) and (5.2) as the solutions of the equations (4.11) must 
have the same expressions as the Dirac electron theory solutions (Schiff, 1955). Let 
us analyze the Dirac electron theory solutions from CWED point of view.  

It is known (Schiff, 1955) that the solution of the Dirac free electron equation 
(2.1) has the form of the plane wave:  

 ,)(exp ⎟
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h
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where ; ; the amplitudes  are the numbers and 4,3,2,1=j B b ej j
i= φ bj φ  is 

the initial wave phase. The functions (5.3) are the eigenfunctions of the energy-
momentum operators, where ε  and pr  are the energy-momentum eigenvalues. 
Here for each , the energy 

rp ε  has either positive or negative values according to 

the energy-momentum conservation law equation 4222 cmpc e+±=±
rε . 

For ε +  we have two linear-independent set of four orthogonal normalizing 
amplitudes: 
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and accordingly for ε −  : 
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Each of these four solutions (Schiff, 1955) can be normalized by its 
multiplication by normalization factor: 
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which gives  1=+ψψ
Let's discuss these results. 
1) The existing of two linear independent solutions corresponds with two 

independent orientations of the electromagnetic wave vectors and gives the unique 
logic explanation for this fact. 

2) Since ( )ψ ψ= y , we have  and for the field 

vectors we obtain: from (4.4) and (4.5) for "positive" energy 
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and from (4.6) and (4.7) for "negative" energy: 
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which exactly correspond to  (5.1) and (5.2).     
3) Calculate the correlations between the components of the field vectors. 

Putting φ
π

=
2

 for  and  we obtain correspondingly: 2cme=+ε
2cme−=−ε
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Obviously the imaginary unit in these solutions indicates that the field vectors r
E  and 

r
H  are mutually orthogonal.  

Also we see that the electric field amplitude is two times less, than the magnetic 
field amplitude. This fact shows that the electromagnetic field’s values, which 
correspond to the Dirac equation solution, are different contrary to fields of the linear 
wave of the Maxwell theory, where HE

rr
= . (It can be shown that this result 

provides the electron stability).  
4) It is easy to show that the electromagnetic form of the solution of the Dirac 

equation is the standing wave. Really in case of the circle-twirled wave we 
have  and therefore rp rr

⊥ 0=⋅ rp rr
; then instead (4.3) we obtain: 

 ⎟
⎠
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⎜
⎝
⎛−= tibjj εψ

h
exp ,  (5.12)                    

5) According with the Euler formula    the solution of 
the Dirac equation (5.12) describes a circle, as it corresponds to our theory. 

ϕϕϕ sincos iei +=

6) Let’s calculate the normalization factor, substituting: : 2, cmcmp ee == ε
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,  (5.13) 

and compare it with normalization factor, which is received from the electromagnetic 
representation of the theory. In view of that the electric field is twice less of magnetic 
field, the energy density of  twirled semi-photon will be equal:  
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Using non-normalized expression for the wave function: 
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(where  is some constant, generally dimensional), and using also the Hermitian-
conjugate function: 

B0
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for field energy we will receive the following expression: 

 2
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5
8
1

8
1 BW jj ⋅⋅== +

π
ψψ

π
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which precisely corresponds to the quantum theory result. 

6.0. Particularities of wave function of electron equation  
As is known the fields of a photon are vectors, transforming as elements of 

group (O3). The spinor fields of the Dirac equation are transformed as elements of 
group (SU2). As it is shown by L.H. Ryder (Ryder, 1987) and others, two spinor 
transformations correspond to one transformation of a vector. For this reason the 
spinors are also named "semi-vectors" or "tensors of half rank" (Goenner, 2004; 
Sokolov & Ivanenko, 1952). 

From above following that the twirling and breaking of the twirled photon waves 
corresponds to transition from usual linear Maxwell equation to the EM curvilinear 
wave equation with an imaginary tangential currents (i.e. to the EM Dirac equation). 
Obviously, the transformation properties of electromagnetic fields at this transition 
change. Just as the wave functions of the Dirac equation (i.e. spinors) submit to 
transformations of group (SU2), the semi-photon fields must submit to the same 
transformations. 

Let us try now to specify the differences between electromagnetic fields 
of the { }zxzx ',',',' ΗΗΕΕ Ψ -function of twirled photon and electromagnetic 

fields of { zxzx HHEE ,,, } ψ -function of twirled semi-photon. Taking into 
account that we have the same mathematical equations both for the CWED Dirac 
equation and the Dirac electron equation, we can affirm that these transformation 
features coincide with the same features of the spinor (Ryder, 1987; Gottfried & 
Weisskopf, 1984). 

The spinor invariant transformation has the form:  
    ψψ U=' ,   (6.1) 
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where the operator of transformation is entered as follows: 

 ( ) θσθθ
2
1sin'

2
1cos rrr

⋅−= ninU ,    (6.2)  

where  is the unit vector of an axis, nr θ  is a rotation angle around this axis and 
( )',','' zyx σσσσ =

r
 is the spin vector. 

The rotation matrix (6.2) possesses a remarkable property. If the rotation occurs 
on the angle πθ 2=  around any axis (therefore occurs the returning to the initial 
system of reference) we find, that 1−=U , instead of 1=U  as it was possible to 
expect. In other words, the state vector of system with spin half in usual three-
dimensional space has two-valuedness and passes to itself only after turn to the angle 
π4 . 

This result can be explained only if we suppose that the EM electron is the 
twirled half-period of a twirled photon particle, and therefore needs to be rotated 
twice to return to the initial state.  In other words, the twirled semi-photon is the 
twirled half-period of the photon. 

Taking into account the above results the solution of the EM electron equation 
(i.e. Dirac equation in the EM form) we can name  "electromagnetic spinor". In other 
words the electromagnetic spinor is the semi-period of twirling EM wave. Thus, the 
transformation of the “linear” electromagnetic wave into curvilinear wave and its 
symmetry breaking produces the electromagnetic spinors. 

7.0. Electromagnetic Non-linear Electron Equation and 
its Lagrangian 
7.1. The EM nonlinear electron equation  

Obviously the curvylinearity of photon or semi-photon motion must be 
described by non-linear equation. From this it follows that the CWED equation of 
EM electron must be the non-linear field equation. Let us find it electromagnetic and 
quantum forms. 

The stability of twirled semi-photon is possible only by the semi-photon part’s 
self-action. Using (4.12) from (4.11) we will obtain the following non-linear 
equation: 

 ( ) ( )[ ] 0ˆˆˆˆ0 =−⋅+− ψαεεα inin ppc rrr
,  (7.1)    

where the inner energy and momentum can be expressed, using the inner energy 
density U  and momentum density gr (or Poynting vector S

r
) of EM wave: 
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putting the upper limit τ  to be variable. 
Substituting of the expression (7.2) and (7.3) to the EM electron equation, we 

obtain the non-linear integral-differential equation, which is, as we suppose, the 
searched form of the non-linear equation, which describes the EM-electron in both 
electromagnetic and concurrent quantum forms.  

To show, that the equation (7.1)  can actually pretends to the role of the equation 
of non-linear electrodynamics of  the electron EM particle, we find its approximate 
quantum form. 

Using EM form of  ψ - function, it is easy to prove that the quantum forms of 

and  are: U S
r

 ψαψ
π 0ˆ

8
1 +=U , (7.4)  

 gccS rrr
2ˆ

8
=−= + ψαψ

π
,  (7.5)  

Taking into account that the free electron Dirac equation solution is the plane 
wave: 

 ( )[ ]kyti −= ωψψ exp0 ,   (7.6)  

we can write (7.2) and (7.3) in the next approximate form: 
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   ψαψ
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rrrr +∆
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c
S

c
gp p ,   (7.8)      

where τ∆  is the volume, which contain the main part of the twirled semi-photon 
energy. Then the approximate form of the equation (7.3) will be following: 
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8

ˆ
0 =−

∆
+∇− ++ ψψαψαψαψ

π
τψα
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ψ∂ rrrr

c
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It is not difficult to see that the equation (7.9) is the non-linear equation of the 
same type as non-linear Heisenberg equation(Heisenberg, 1966; Paper translation 
collection, 1959):  
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∂ ψγγψψγγψγψψγψγ µµµµ
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x
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if instead of α -set Dirac matrices we will use γ -set matrices (here  is some 
positive constant). The non-linear equation (7.10) was postulated and investigated by 
Heisenberg et. al. as the unitary quantum field theory equation. Contrary to the last 
one, the equation  (7.9) is obtained by logical and correct way and the self-action 
constant  appeared in (7.9) automatically. As it is known in the framework of this 
non-linear unitary field theory some substantial achievements were made. 

l

l

7.2. The Lagrangian of the nonlinear electron theory  
The Lagrangian of the Dirac electron theory of linear type in quantum form is 

(Schiff, 1955): 

 ( ) ,ˆˆˆˆ 2 ψβαεψ cmpcL eD ++= + rr
   (7.11) 

It is not difficult to find its electromagnetic form: 
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(Note that in the case of the variation procedure we must distinguish the 
complex conjugate field vectors 

r
E * ,

r
H * and 

r
E ,

r
H ). 

The Lagrangian of non-linear theory is not difficult to obtain from the 
Lagrangian (7.11) using the method by which we found the nonlinear equation. By 
substituting (5.1) we obtain: 

    ( ) ( ψαεψψαεψ ininN pcpcL )rrrr
⋅−+⋅−= ++ ˆˆˆˆ ,      (7.13)  

We suppose that the expression (7.13) represents the common form of the 
Lagrangian of the non-linear electron theory.  In order to compare (7.13) with the 
known results of classical and quantum physics let us find the approximate 
electromagnetic and quantum forms of this Lagrangian. 

Using (7.7) and (7.8) we can represent (7.11) in the  following quantum form: 
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To obtain the EM form of (7.14) we initially pass on to normalized ψ -function, 

using the expression NN L
mc

L 28
1'

π
= .  Then we transform (7.13), using 

equations (7.4) and (7.5), and obtain from (7.14) the following approximate 
electromagnetic form: 
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It is not difficult to transform the second term, using the known identity of 
electrodynamics: 

( ) ( ) ( ) ( ) ( ) ( )222222222222 448 HEHEHEHEgcU
rrrrrrrrr

⋅+−=×−+=−π , (7.16) 

Thus, taking into account that 0=DL  and using (7.12) and (7.16), we obtain 
from (7.15) the following expression: 
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As we see, the approximate form of the Lagrangian of the nonlinear equation of 
the twirled electromagnetic wave contains only the invariants of the Maxwell theory 
and is similar to the known Lagrangian of the photon-photon interaction (Akhiezer 
and Berestetskii, 1965). 

Let us now analyze the quantum form of the Lagrangian density (7.17). The 
equation (7.12) can be written in the form: 
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It is not difficult to see that the electrodynamics correlation (7.16) in quantum 
form has the form of the known Fierz identity (Cheng and Li, 1984; 2000):   
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Using (7.19) from (7.18) we obtain: 
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π
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The Lagrangian (7.20) coincides with the Nambu and Jona-Lasinio Lagrangian 
(Nambu and Jona-Lasinio, 1961; 1961a), which is the Lagrangian density of the 
relativistic superconductivity theory. As it is known this Lagrangian density is used 
for the solution of the problem of the elementary particles mass appearance by the 
mechanism of the vacuum symmetry spontaneous breakdown (it corresponds also to 
the Cooper’s pair production process in the superconductivity theory). 

Note again that in our theory, the breakdown of symmetry also takes place 
when a mass of particles appears within twirling and breaking of photon. 
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8.0. About peculiarities of CWED as the non-linear theory 
It is not difficult to see that CWED disclose two types of non-linearity. The first 

type is connected with postulate 6 of CWED about the motion of EM wave along 
curvilinear closed trajectories. The curvilinearity, as a deviation from linearity, is 
possible to consider as one of kinds of non-linearity. But in our case these non-linear 
trajectories concern to concrete kind: they are created and described by harmonic 
functions and by their superpositions. It allows to describe this non-linearity by the 
linear equations. 

Really, the motion along a circle can be presented as the sum of two linear 
harmonic oscillations. The sum of greater number of oscillations leads to the 
multiform (including, spatial) curvilinear trajectories, known as Lissajous figures. 
Apparently, in this connection all these non-linearities are conveniently and simply 
described by complex functions (more detail see chapter 8). It is possible to assume 
that the Fourier apparatus of the analysis and synthesis of functions reflects such 
opportunity of the linear description of curves, which can be described  by the sum of 
the linear harmonic oscillations. 

In this case it is possible in the existence of Fourier theory to see the reflection of 
the reality, described by CWED. Since the Fourier theory can be used only in the 
case of linear functions, obviously, this "harmonic curvilinearity” allows in these 
conditions to consider the CWED to be the linear theory, i.e. the theory, in which as 
well as in the quantum field  theory, the principle of superposition is strictly carried 
out. 

But, on the other hand, as we saw, the twirling of EM waves results also in other 
type of non-linearity. Really, we deal here not only with trajectories, but with the 
fields, which "are attached" to this trajectory by strictly defined manner. During 
formation of EM particles, i.e. as a result of bending of trajectory of an EM wave, 
inside of its volume the field configuration varies. This enters into the equations the 
non-linear terms, which are presented neither in classical electrodynamics, nor in the 
linear quantum field theory. The splitting up of the twirled photon into two twirled 
half-period even more complicates this picture. Thus, strictly speaking, inside of a 
particle operates the non-linear field theory and apparently the principle of 
superposition should here not have place. 
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